In this post, I want to finish the timeline by discussing how this region of Russia transitioned from ice age to the modern warm period. If you are interested in how the story beings, please see
in my previous post.
|
Figure 1: Map of northwestern Russia with sites of interest, and geographical and political boundaries. Major water bodies are the Gulf of Finland at the top left and Lake Ladoga at the top right. The city of St. Petersburg (Санкт-Петербург) is located on the delta of the Neva River, which feeds the gulf from the east. |
Around 21,000 years ago, the Scandinavian Ice Sheet extended to the hills of Valdai (Fig. 1), where morainal (Fig. 9; last post) and proglacial sediments are still found at the surface. Thus it is no surprise that the modern topography—its plains, ridges, lakes and rivers—are defined entirely by the advance and degradation of this monstrous block of
moving ice. And yes, it is vital to emphasize that glacial is constantly
moving, albeit at inches per year.
|
Figure 2: Valley lowlands outside of Velikiy Novgorod, where a few thousand feet of ice flattened the landscape and left it bare. |
As a result, the Earth's surface is scratched, twisted, or smoothed out (Fig. 2) while the ice sheet samples rocks and sediments across its entire journey, much like an obsessed traveller stopping at every gift shop for representative collectibles. In fact, some of the more successful attempts to estimate the
average chemical composition of the Earth's crust merely involved analyzing clays that accumulated at the edge of glaciers. Glaciers are nature's most meticulous geologists, in that sense.
|
Figure 3: Southern coast of Lake Ilmen; view from atop the glint (limestone escarpment; see Fig. 3, last post). |
Continental glaciers begin to retreat when the ice at their margin melts faster than ice can accumulate in higher latitudes. In other words, melting glaciers are not like stagnant ice cubes left out in the sun, but continue to flow even as they disappear. For northern Eurasia and Fennoscandia (as in North America), the disappearance of such ice took some
10,000 years, just to give you an idea of the volume of freshwater added to the continent. During the transition from the Late Glacial period to the early Holocene (~14,000–9,000 years ago), the climate of northern Eurasia also became substantially warmer
and wetter. The contribution of glacial ice, melting permafrost, and enhanced precipitation was sufficient to raise the water levels of the Black Sea and Caspian Sea by tens of meters. In northwestern Russia, numerous lakes and rivers now fill depressions that formed under and between lobes of glacial ice, though most lakes have decreased in area since the Late Glacial period. Lake Ilmen (above and below) is a prime example.
|
Figure 4: Rocky shoreline of Lake Ilmen, which includes erratic boulders from northern granites. |
Lake Ilmen basin developed in a proglacial setting, where it was fed by water and sediment from the ice sheet to the north. That Lake Ilmen was once much larger is evidenced by banded (varved) clay formations that extend far beyond the modern lake margin (Figs. 25-27, last post). Overlying these clays, stratigraphically, are thin-bedded sandy sediments that reflect a shallowing of the lake as the landscape and climate further evolved. During the Late Glacial period (14,000–11,500 years ago), the level of Lake Ilmen fluctuated in response to oscillating ice sheets, brief cooling and drying of climate, and the formation of a 'pre-Volkhov' channel that caused the lake to drain below modern level about 13,000 years ago.
|
Figure 5: Northwestern shore of Lake Ilmen. The lake itself covers a shallow depression, visible also by low-gradient shorelines on the northern edge. Between rainy and drought years, the area of the lake fluctuates by more than a factor of two. |
Pollen and spores collected from these sediments tell their own story of lush forests and grassy meadows, which quite literally sprouted from the barren ground shortly after it melted. The relative abundance of pollen from grasses, herbs, and trees in lake sediments very precisely reflects the temperature and humidity of the surrounding region. By collecting pollen and spores from each layer, therefore, one can interpret how climate changed over time. As you might imagine, stratigraphic shifts in pollen abundances closely follow lake level (cold vs. warm climate), as well as oxygen isotope records from the North Atlantic ocean (also indicative of cool vs. warm climate). These records also generally agree with those from
caves and loess in Eastern Europe, peat and lake formation in the Baltic region, and other proxies on land. Geologists and paleogeographers use these tools to reconstruct past climate changes region by region, as well as to deduce physical causes behind such changes.
|
Figure 6: A brief detour (fish on the Ilmen shore): contrary to YEC claims, it is possible to collect specimens for fossilization in sediments accumulating at modern rates. This half-buried fish (not to mention an abundance of shells) is a common site on lake shores, as scavengers are more interested in meat than bones. On the shore of the Great Salt Lake, I've even seen an entire bird skeleton buried under a few centimeters of lime sediment, which solidifies rather quickly. If this process was responsible for the bulk of fossils currently found in the geological record, then we might still predict that preservation is a rarity. But that is a far cry from "impossible" outside of "catastrophic conditions". |
It is a curious challenge for the YEC, therefore, that proxies for Pleistocene and Holocene climate agree so well, given that each is dated by various methods (
Radiocarbon,
U-series, OSL, ESR, Beryllium-10, etc.) and reflects different geological processes. It is possible that in NW Russia, for example, a shift in pollen abundance from cold-weather herbs to an dominance of pine and oak trees (a sign of warmer and wetter climate) was not due to changing climate over thousands of years, but is rather an artifact of sediments from various regions being washed into a single lake basin (remember, the Flood can accomplish whatever one wants it to). I have heard YEC's argue in this manner, but one should ask: why does the radiocarbon method, applied to several dozen lakes in Russia alone, date this transition (which happened across Eurasia and North America) to approximately the same time period? Furthermore, why does the oxygen-isotope composition of calcite (from marine shells, carbonate lakes, or caves) record a similar transition at the same time, as defined by a completely different dating method (U-Th)?
|
Figure 7: Mouth of the Volkhov River, which connects Lake Ilmen to Lake Ladoga (another geomorphological remnant of the ice sheet). View from St. George Monastery—the oldest in Russia—in Velikiy Novgorod. |
Put more simply, if radiometric dating doesn't work, then why does it work so well?
The physical theory by which dates from each method are interpreted from raw data
have only time in common in their equations. In other words, there is no physical explanation besides the passage of time to explain why radiocarbon and Uranium-Thorium dates should agree with each other, since each dating method reflects a completely different process (the accumulation of radioactive carbon in the atmosphere versus the accumulation of thorium in crystalline calcite). The most parsimonious explanation is the one most commonly given: global and regional climates changed dramatically over the course of several thousand years during the transition from ice age (~21,000 years ago) to a warm early Holocene (~11,000 years ago).
|
Figure 8: Ducks! But not entirely unrelated to the glacial story. As ice melts from the land, many tons of pressure leave with it. This often cracks the frozen ground, forming new paths for groundwater to reach the surface. Highly mineralized water still bubbles to the surface and is the fount for this popular health resort at Staraya Russa, where Dostoevsky himself wrote part of The Brothers Karamazov and found inspiration for one of its characters. |
|
Figure 9: Speaking of groundwater, this artesian aquifer was tapped accidentally by the advancing German army in World War II, when a shallow well pierced the overlying aquitard. Just west of Novgorod, this creek and a nearby monument to local Soviet soldiers mark the occasion's solemn memory. |
And on to Velikiy Novgorod, which recently celebrated its 1153rd birthday. Novgorod is one of the oldest cities in the Russian territory, though it was not annexed to Russia officially until the reign of Ivan the Terrible (16th century). Novgorod owes its economic success to the process of deglaciation some 14,000 years prior. The numerous rivers that now feed or drain Lake Ilmen connect the Gulf of Finland/Baltic Sea to the Black Sea and the Caspian Sea—not to mention every city in between. This made Novgorod an ideal spot for Medieval tradesmen and merchants. Until the past few centuries, Novgorod rivaled cities like Paris, both economically and in terms of population. Even the peasants of Novgorod enjoyed a relatively high standard of living up through the Imperial period. I highly recommend this spot to any of you travelling to Eastern Europe, not only for its historical sites and architecture, but for the natural beauty that surrounds it.
|
Figure 10: In the "Square of Seven Churches", this one alone reveals the original brickwork. The original date of construction escapes me (13th century?), but the preservation is outstanding nonetheless. For most of its history, stone construction was not allowed in Novgorod except for churches. For that reason, the city burned down multiple times—well, all but the cathedrals. |
|
Figure 11: Main bridge and gate to the Kremlin at Novgorod. Two more outer walls protected the city, as well as this innermost citadel, from invaders. This stronghold was also known as the "Detinets" (Детинец), which may also refer to the fetus of a mother. Fortunately, these walls never served a defensive purpose and still stand ~1,000 years later. The Novgorod Kremlin is also home to the oldest cathedral in all of Russia: St. Sophia's (follow link for more pictures of the cathedral and its art). |
As one follows the retreat of the glacier back toward St. Petersburg, the Izhora Plateau stands out among the absolutely flat landscape. Bound on the north by a cuesta-like escarpment, the plateau diverts major rivers such as the Volkhov that flow north to Lake Ladoga or the Baltic Sea. The faulted and folded landscape of the Izhora Plateau is partially due to glacial sculpting, but much is a result of neotectonic deformation since the earliest stage of the Holocene. As a result, numerous springs flow from the fractured, Ordovician limestone bedrock. The rivers and lakes here are pristine and crystal clear (Fig. 22), while the vegetation is so green year round as to be therapeutic.
Photos you shared in this blog is really looking fantastic and nicely clicked. I am glad to read your blog. Thanks for sharing your experience and photos with us. keep posting like this.
ReplyDeleteRussia Tour Packages